Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper reviews particle packing models and explores their application in geotechnical engineering, specifically for sand-silt mixtures. The review covers key models, including limiting case, linear, and non-linear packing models, focusing on their mathematical structures, physical principles, assumptions, and limitations through the concept of excess free volume. The application of particle packing models in geotechnical engineering is explored in characterizing the properties of sand-silt mixtures, offering insights into maximum, minimum, and critical void ratios and inter-granular void ratio, and the prediction of mechanical properties.more » « less
-
Astrocytes are a ubiquitous and enigmatic type of non-neuronal cell and are found in the brain of all vertebrates. While traditionally viewed as being supportive of neurons, it is increasingly recognized that astrocytes play a more direct and active role in brain function and neural computation. On account of their sensitivity to a host of physiological covariates and ability to modulate neuronal activity and connectivity on slower time scales, astrocytes may be particularly well poised to modulate the dynamics of neural circuits in functionally salient ways. In the current paper, we seek to capture these features via actionable abstractions within computational models of neuron-astrocyte interaction. Specifically, we engage how nested feedback loops of neuron-astrocyte interaction, acting over separated time-scales, may endow astrocytes with the capability to enable learning in context-dependent settings, where fluctuations in task parameters may occur much more slowly than within-task requirements. We pose a general model of neuron-synapse-astrocyte interaction and use formal analysis to characterize how astrocytic modulation may constitute a form of meta-plasticity, altering the ways in which synapses and neurons adapt as a function of time. We then embed this model in a bandit-based reinforcement learning task environment, and show how the presence of time-scale separated astrocytic modulation enables learning over multiple fluctuating contexts. Indeed, these networks learn far more reliably compared to dynamically homogeneous networks and conventional non-network-based bandit algorithms. Our results fuel the notion that neuron-astrocyte interactions in the brain benefit learning over different time-scales and the conveyance of task-relevant contextual information onto circuit dynamics.more » « less
-
Despite recent promising results on semi-supervised learning (SSL), data imbalance, particularly in the unlabeled dataset, could significantly impact the training performance of a SSL algorithm if there is a mismatch between the expected and actual class distributions. The efforts on how to construct a robust SSL framework that can effectively learn from datasets with unknown distributions remain limited. We first investigate the feasibility of adding weights to the consistency loss and then we verify the necessity of smoothed weighting schemes. Based on this study, we propose a self-adaptive algorithm, named Smoothed Adaptive Weighting (SAW). SAW is designed to enhance the robustness of SSL by estimating the learning difficulty of each class and synthesizing the weights in the consistency loss based on such estimation. We show that SAW can complement recent consistency-based SSL algorithms and improve their reliability on various datasets including three standard datasets and one gigapixel medical imaging application without making any assumptions about the distribution of the unlabeled set.more » « less
An official website of the United States government

Full Text Available